Hole hopping through tyrosine/tryptophan chains protects proteins from oxidative damage.

نویسندگان

  • Harry B Gray
  • Jay R Winkler
چکیده

Living organisms have adapted to atmospheric dioxygen by exploiting its oxidizing power while protecting themselves against toxic side effects. Reactive oxygen and nitrogen species formed during oxidative stress, as well as high-potential reactive intermediates formed during enzymatic catalysis, could rapidly and irreversibly damage polypeptides were protective mechanisms not available. Chains of redox-active tyrosine and tryptophan residues can transport potentially damaging oxidizing equivalents (holes) away from fragile active sites and toward protein surfaces where they can be scavenged by cellular reductants. Precise positioning of these chains is required to provide effective protection without inhibiting normal function. A search of the structural database reveals that about one third of all proteins contain Tyr/Trp chains composed of three or more residues. Although these chains are distributed among all enzyme classes, they appear with greatest frequency in the oxidoreductases and hydrolases. Consistent with a redox-protective role, approximately half of the dioxygen-using oxidoreductases have Tyr/Trp chain lengths ≥3 residues. Among the hydrolases, long Tyr/Trp chains appear almost exclusively in the glycoside hydrolases. These chains likely are important for substrate binding and positioning, but a secondary redox role also is a possibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron flow through biological molecules: does hole hopping protect proteins from oxidative damage?

Biological electron transfers often occur between metal-containing cofactors that are separated by very large molecular distances. Employing photosensitizer-modified iron and copper proteins, we have shown that single-step electron tunneling can occur on nanosecond to microsecond timescales at distances between 15 and 20 Å. We also have shown that charge transport can occur over even longer dis...

متن کامل

Could tyrosine and tryptophan serve multiple roles in biological redox processes?

Single-step electron tunnelling reactions can transport charges over distances of 15-20 Åin proteins. Longer-range transfer requires multi-step tunnelling processes along redox chains, often referred to as hopping. Long-range hopping via oxidized radicals of tryptophan and tyrosine, which has been identified in several natural enzymes, has been demonstrated in artificial constructs of the blue ...

متن کامل

Electron Flow through Proteins.

Electron transfers in photosynthesis and respiration commonly occur between metal-containing cofactors that are separated by large molecular distances. Employing laser flash-quench triggering methods, we have shown that 20-Å, coupling-limited Fe(II) to Ru(III) and Cu(I) to Ru(III) electron tunneling in Ru-modified cytochromes and blue copper proteins can occur on the microsecond timescale both ...

متن کامل

Using an artificial tryptophan "wire" in cytochrome c peroxidase for oxidation of organic substrates.

Lignolytic peroxidases use an electron transfer (ET) pathway that involves amino acid-mediated substrate oxidation at the surface of the protein rather than at an embedded heme site. In many of these peroxidases, redox catalysis takes place at a substrate accessible tyrosine or tryptophan (Trp) amino acid. Here, we describe new mutants of cytochrome c peroxidase (CcP) that were designed to inco...

متن کامل

Defusing redox bombs?

Proteins catalyze crucial reactions via unstable, high-energy chemical intermediates. In the absence of physiological substrates, activated redox cofactors become ticking time bombs, capable of producing oxidative damage to the protein. In PNAS, Gray and Winkler (1) propose that chains of tryptophan (Trp) and tyrosine (Tyr) residues may serve as escape routes for potentially damaging, highly ox...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 35  شماره 

صفحات  -

تاریخ انتشار 2015